

Time, t=75.8 s

The Healy Wave Energy Converter

Healy Wave Energy, LLC is developing a wave energy conversion (WEC) device that is designed for reliability, safety, and economical power production for island and coastal communities. The unit employs a novel low operating pressure pneumatic Power Take-Off (PTO) and a novel low-impact-force hydrodynamic end-stop feature. The 43-ton prototype device, constructed in Clearwater, Florida, will be

deployed at the University of New Hampshire Open Ocean Test Site starting in 2018 for a longterm test of its power production and longevity.

Performance Evaluation

MMC developed a custom model that coupled the multibody hydrodynamics of the device with the pneumatics of the PTO and included hydraulic brake dynamics and the physics of a variable ballast system. This allowed MMC to:

- Quantify system losses.
- Evaluate annual energy production and the system's ACE metric (the ratio of average climate capture width to characteristic capital expenditure).
- Incorporate control algorithms through a simulated Programmable Logic Controller (PLC).
- Advise on critical design decisions.

Extreme event analysis

MMC also incorporated nonlinear, largedisplacement mooring dynamics to evaluate the system's response to extreme storms. This included:

- Deriving extreme event parameters (50-year storm conditions) from historical data.
- Analyzing extreme value statistics (e.g. snap loads).

		Peak Period, s										
	2	3	4	5	6	7	8	9	10	11	12	13
Significant Wave Height, m	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	4.8E-05	0	0	0	0	0	0
	0	0	0	0	0	0	1.2E-04	0	0	0	0	0
	0	0	0	0	0	0	7.8E-06	1.4E-04	0	0	0	2.2E-04
	0	0	0	0	0	0	0	7.8E-06	1.6E-04	6.1E-04	0	9.6E-05
	0	0	0	0	0	0	0	0	4.8E-05	3.0E-04	4.8E-04	1.9E-04
	0	0	0	0	0	0	0	0	0	1.1E-04	4.0E-04	1.7E-04
	0	0	0	0	0	0	0	0	0	8.4E-06	2.1E-04	7.4E-05
	0	0	0	0	0	0	0	0	0	7.5E-06	1.4E-04	4.9E-05
	0	0	0	0	0	0	0	0	0	0	2.4E-05	1.6E-05
	0	0	0	0	0	0	0	0	0	0	7.8E-06	2.5E-05

• Implementing best practices in model-driven design to optimize the mooring for cost, power production, stability, and reduced peak loads.

More information on the Healy WEC System can be found at www.healywaveenergy.com For more information on MMC's project contact info@mainemarinecomposites.com